dreamforce
Lﬁ:ars

Design Patterns for
Salesforce CIl/CD

Pablo Gonzalez, Business Engineering Architect,
Salto
https://www.linkedin.com/in/pablis/

Pablo Gonzalez

Business Engineering Architect @
Salto.io

Agenda

e Mandatory history on CI/CD
e Patterns for creating a Salesforce deployment pipeline
e CI with GitHub actions

e Full demo

Continuous Integration (CI)

The problems

CI aims to solve

Combining the work of
multiple developers is
hard

Developers have adopted
branches to work in isolated
environments

Branches diverge from
each other

The more branches you
have, the harder it is to
merge them together

salesforce

Complicated merges lead
to code freezes

Expensive and
unpredictable process

Continuous Integration
defined

e Continuous Integration is a software development practice
where members of a team integrate their work frequently into a
common branch of a version control repository

e Each integration is verified by an automated build to detect

Integration errors as quickly as possible.

Challenges of Continuous Integration

Tasks need to be broken down into Need for reliable automated regression
small chunks testing
Paradigm shift for most developers Hard to implement in Salesforce due to

governor limits, inconsistent testing
frameworks, etc.

2

%‘x‘
m-

Continuous Delivery (CD)

Continuous Delivery is the
ability to get changes of all
types into production, safely
and quickly in a sustainable
way.

Jez Humble, Author of continuousdelivery.com

T

Continuous Delivery

principles
Build quality in Work in small Automate Continuous
Fix bugs as soon as batches everything Improvement
they are found and Get feedback as Let people focus on CI/CD is not the goal
ideally before quickly as possible higher value activities
committing them to
version control Don’t be satisfied

with the status quo

Avoid reliance on
manual testing

Salesforce Deployment
Pipeline

An automated process that runs your salesforce
metadata through a series of steps such as quality
checks, tests and deployments. This process fires in
response to events in your version control
repository.

Each successful step increases confidence in our
Implementation.

Patterns, not mandates

Do whatever works for you

Choosing a sandbox
strategy

Step 1

Sandbox Strategy

Things to consider

e Should every developer have their own sandbox?
e Which type of sandbox will you use for different types of testing?
e How are sandbox populated with fake data?

e How easily can you refresh your full sandbox (post-refresh activities)

S
M‘A

Sandbox Strategy
Typical strategy

Full Sandbox _

Production

Choosing which metadata
to track

Step 2

Tracking metadata in git

Things to consider

e Should we track only code-based metadata?

e What about changes that are made directly in production (email templates,
deactivation a flow, etc)

e Do we know the Salesforce metadata API well enough to track everything?

e Which metadata, if versioned, will make our releases and apps better?

S
M‘A

Choosing a branching
strategy

Step 3

Branching strategy

Things to consider

e Do we create one branch per Salesforce org?
e [sthere a version of trunk-based development that would fit our needs?
e How do we deploy to production? from which branch and when?

e Aim to have short-lived branches

S
M‘A

Branching strategy
Gitflow

Choosing a Cl server
Step 4

A ClI server creates virtual machine

that can do the following

Check out your sfdx Respond to events in Execute commands on a
project version control terminal
It loads your tracked sfdx Will listen to push, pull sfdx commands, bash,

project into its file system requests, and other events node.|s, etc.

Cl servers

Options

e GitHub Actions

e Azure DevOps

e Bitbucket Pipelines
e GitLab CI

e Circle CI

e Jenkins

S
M‘A

Deciding what to automate
and when

Step 5

Actions

to automate

Deployment Run tests Scan the code Delta
Automate the SPeCiﬁed by the Use PMD to scan the deployment
deployment of developer apex code Deploy only the

metadata that has
been
created/updated
since the last commit

metadata to the next
org in the pipeline

Give the developer
the freedom to
choose which tests
should be run

Events

to trigger automation

Pull request is open
e Figure out which

metadata has changed

e PMD

e Check-only
deployment of delta to
INT org

e Run tests specified by

developer

S
AM‘A

Pull request is approved
and merged

e Full deployment to
UAT

e Run all tests

Footer

salesforce

Development branch is
merged into master

e Full deployment to
production

e Run all tests

Finally! a demo!

Workflow with GitHub actions

Authenticate to target org

how it’s done

136 # The URL is stored in the Github Secret named SFDX_INTEGRATION_URL

137 # so here we store the URL into a text file

138 v - name: "Populate auth file with SFDX_URL secret of integration org"

139 shell: bash

140 run: |

141 echo ${{ secrets.SFDX_INTEGRATION_URL}} > ./SFDX_INTEGRATION_URL.txt
142

143 # Authenticate to org using the URL stored in the text file

144 ~ — name: "Authenticate to Integration 0Org"

145 run: sfdx auth:sfdxurl:store —-f ./SFDX_INTEGRATION_URL.txt -s —a integration
1AA

Run apex tests specified in pull request
how it’s done (part 1)

pgonzaleznetwork commented 18 days ago

Description

Please include a summary of the change and what has changed.

Jira Ticket

CRM-XXX

Apex Tests to Run

Apex::[GitClassTest]::Apex

S
MA

Run apex tests specified in pull request
how it's done (part 2)

85 v run: |

86

87 FILE=./parsePR.js

88 v if test -f "$FILE"; then

89 echo $PR_BODY > ./pr_body.txt

90 node ./parsePR.js

91 TESTS=$(cat testsToRun.txt)

92 echo "APEX_TESTS=$TESTS" >> $GITHUB_ENV
93 v else

94 TESTS=all

95 echo "APEX_TESTS=$TESTS" >> $GITHUB_ENV
96 e 8

Sgo Q7
M‘A

Run apex tests specified in pull request
how it's done (part 3)

10 const lines = readline.createInterface({

L input: fs.createReadStream(__dirname+'/pr_body.txt"'),
12 crifDelay: Infinity

13 });

14

15 for await (const line of lines) {

16

¥ let upperLine = line.toUpperCasel();

18

19 //special delimeter for apex tests

20 if(upperLine.includes('APEX::[') && upperLine.includes(']::APEX"')){
21

22 let tests = line.substring(8, line.length-7);

23 await fs.promises.writeFile(testsFile,tests);

24 await fs.promises.appendFile(testsFile,'\n');

25 3

26 }

o 7 }

Generate delta deployment

how it’s done (sfdx-git-delta)

147 # We use SFDX Git Delta to create a directory with only the metadata that has changed.

148 # this allows us to deploy only those changes, as opposed to deploying the entire branch.

149 # This helps reducing deployment times

150 - name: "Create delta packages for new, modified or deleted metadata"

151 run: |

152 mkdir changed-sources

153 sfdx sgd:source:delta ——to "HEAD" —--from "HEAD™" —--output changed-sources/ —-—generate-delta —--source force-app/
154

Extra

topics I didn’t cover

Docker

containers/images for CI servers

& Dockerfile
FROM heroku/heroku:18

1l

2

3 ENV DEBIAN_FRONTEND=noninteractive

4 ARG SALESFORCE_CLI_VERSION=latest-rc
5 ARG SF_CLI_VERSION=latest-rc
6
7
8
9

RUN echo 'a®f23911d5d9c371e95ad19e4e538d19bffc09657007187840eb39a91b0c3fb® ./nodejs.tar.gz' > node-file-lock.sha \
&S curl -s -0 nodejs.tar.gz https://nodejs.org/dist/v16.13.2/node-v16.13.2-1linux-x64.tar.gz \
&& shasum —--check node-file-lock.sha
10 RUN mkdir /usr/local/lib/nodejs \

11 && tar xf nodejs.tar.gz -C /usr/local/lib/nodejs/ ——strip-components 1 \
12 & rm nodejs.tar.gz node-file-lock.sha
13

14 ENV PATH=/usr/local/lib/nodejs/bin:$PATH

15 RUN npm install --global sfdx-cli@${SALESFORCE_CLI_VERSION} --ignore-scripts
16 RUN npm install --global @salesforce/cli@${SF_CLI_VERSION}

17

CI/CD for configuration data (CPQ, etc.)

NaCl (open source)

Update Change_Price___5.nacl #2

)9Ne) I pgonzaleznetwork wants to merge 1 commit into main from feature/cpgBundles (3}

L) Conversation 0 -0- Commits 1 Fl Checks o Files changed 1

Changes from all commits v File filter v Conversations v Jumpto~ @3 v

v ¢ 2 Em ...orce/InstalledPackages/SBQQ/0Objects/SBQQ__PriceCondition__c/Records/Change_Price
e @@ -5,7 +5,7 @@ salesforce.SBQQ__PriceCondition__c Change_Price__ 5@suuu {
5 5 SBQQ__Object__c = "Quote"
6 SBQQ__Operator__c = "equals"
7 7 SBQQ__TestedFormula__c = "SBQQ__Opportunity2__r.Type"
8 — SBQQ__Value__c = "New Customer"
+ SBQQ__Value_ c = "New Business"
9 9 _parent = [

salesforce.SBQQ__PriceRule__c.instance.Change_Price@s,

DX@Scale

Modular development

A Typical CI/CD Pipeline

Let's look at a typical CI/CD pipeline for a package-based development in a program that has multiple
environments. For brevity, validation before integration is not discussed

Pull Request

(create) _’E Validate
' orchestrator:validate
Check/Validate Pipeline

/Continous Integration’, '
(Trigger — QuickBulld ~ [------ N Dm ~~~~~~~~ > Build & Publish
. (push) / '
e : ploy build p
s e

Cl Pipeline ot att s A : b PR '

Artifact
Repository

HappySoup.io/cicd

Summary and link to free auto-CI app

dreamforce
bﬂls

Share your
feedback.

Provide your feedback on this

session In the Salesforce Events
mobile app and help make our
content even better.

& i AM‘ Managlng your Data
1 Lifecycle is Key in Today’s World |
' 2513 }

|
8urvey

rgt Erin Levzow
Vice President of Marketing Techn...

Marc Mathieu
%’- SVP, Web3 - Salesforce

« Patrick Ward

S5 vp Market ng - Rootstrap ’ F D F 22

salesforce

Thank y

-

[
Ly

