
1

Design Patterns for 
Salesforce CI/CD

Pablo Gonzalez, Business Engineering Architect, 
Salto
https://www.linkedin.com/in/pablis/



Pablo Gonzalez
Business Engineering Architect @ 
Salto.io



Agenda

● Mandatory history on CI/CD

● Patterns for creating a Salesforce deployment pipeline

● CI with GitHub actions

● Full demo



Continuous Integration (CI)



The problems
CI aims to solve

Complicated merges lead 
to code freezes
Expensive and 
unpredictable process

Combining the work of 
multiple developers is 
hard
Developers have adopted 
branches to work in isolated 
environments

Branches diverge from 
each other
The more branches you 
have, the harder it is to 
merge them together



Continuous Integration
defined

● Continuous Integration is a software development practice 

where members of a team integrate their work frequently into a 

common branch of a version control repository

● Each integration is verified by an automated build to detect 

integration errors as quickly as possible. 



Challenges of Continuous Integration

Tasks need to be broken down into 
small chunks
Paradigm shift for most developers

Need for reliable automated regression 
testing
Hard to implement in Salesforce due to 
governor limits, inconsistent testing 
frameworks, etc.



Continuous Delivery (CD)



Continuous Delivery is the 
ability to get changes of all 
types into production, safely 
and quickly in a sustainable 
way.
Jez Humble, Author of continuousdelivery.com



Continuous Delivery
principles

Build quality in
Fix bugs as soon as 
they are found and 
ideally before 
committing them to 
version control

Avoid reliance on 
manual testing

Work in small 
batches
Get feedback as 
quickly as possible

Automate 
everything
Let people focus on 
higher value activities

Continuous 
Improvement
CI/CD is not the goal

Don’t be satisfied 
with the status quo



Salesforce Deployment 
Pipeline 
An automated process that runs your salesforce 
metadata through a series of steps such as quality 
checks, tests and deployments. This process fires in 
response to events in your version control 
repository. 

Each successful step increases confidence in our 
implementation.



Patterns, not mandates
Do whatever works for you



Choosing a sandbox 
strategy
Step 1



Sandbox Strategy
Things to consider

● Should every developer have their own sandbox?

● Which type of sandbox will you use for different types of testing?

● How are sandbox populated with fake data?

● How easily can you refresh your full sandbox (post-refresh activities)



Sandbox Strategy
Typical strategy



Choosing which metadata 
to track
Step 2



Tracking metadata in git
Things to consider

● Should we track only code-based metadata?

● What about changes that are made directly in production (email templates, 

deactivation a flow, etc)

● Do we know the Salesforce metadata API well enough to track everything?

● Which metadata, if versioned, will make our releases and apps better? 



Choosing a branching 
strategy
Step 3



Branching strategy
Things to consider

● Do we create one branch per Salesforce org?

● Is there a version of trunk-based development that would fit our needs?

● How do we deploy to production? from which branch and when?

● Aim to have short-lived branches



Branching strategy
Gitflow 



Choosing a CI server
Step 4



A CI server creates virtual machine
that can do the following

Execute commands on a 
terminal
sfdx commands, bash, 
node.js, etc.

Check out your sfdx 
project
It loads your tracked sfdx 
project into its file system

Respond to events in 
version control
Will listen to push, pull 
requests, and other events



CI servers
Options

● GitHub Actions

● Azure DevOps

● Bitbucket Pipelines

● GitLab CI

● Circle CI

● Jenkins



Deciding what to automate 
and when
Step 5



Actions
to automate

Deployment
Automate the 
deployment of 
metadata to the next 
org in the pipeline

Run tests 
specified by the 
developer
Give the developer 
the freedom to 
choose which tests 
should be run

Scan the code
Use PMD to scan the 
apex code

Delta 
deployment
Deploy only the 
metadata that has 
been 
created/updated 
since the last commit



Pull request is open
● Figure out which 

metadata has changed

● PMD

● Check-only 

deployment of delta to 

INT org 

● Run tests specified by 

developer

Events
to trigger automation

Footer

Pull request is approved 
and merged
● Full deployment to 

UAT

● Run all tests

Development branch is 
merged into master
● Full deployment to 

production

● Run all tests



Finally! a demo!
Workflow with GitHub actions



Authenticate to target org
how it’s done



Run apex tests specified in pull request
how it’s done (part 1)



Run apex tests specified in pull request
how it’s done (part 2)



Run apex tests specified in pull request
how it’s done (part 3)



Generate delta deployment
how it’s done (sfdx-git-delta)



Extra
topics I didn’t cover



Docker
containers/images for CI servers



CI/CD for configuration data (CPQ, etc.)
NaCl (open source)



DX@Scale
Modular development



HappySoup.io/cicd 
Summary and link to free auto-CI app





 Thank you


